
Information Extraction from HTML Documents by Structural Matching

Thomas M. Breuel
PARC, Inc., Palo Alto, CA, USA

1 Introduction

Structured information (database contents, stock quotes,
citations, etc.) is widely available on the Internet in HTML
format. Examples of such information are stock quotes, fi-
nancial data, time tables, customer records, etc. While the
presentation of such information in HTML format is con-
venient for human users, information in this format is not
particularly convenient for automatic processing because it
contains a large amount of irrelevant information. Further-
more, the semantic meaning of different parts of an HTML
document may be encoded in ways that do not correspond
in a simple way to a structured representation of the data.

A number of approaches have been taken to this prob-
lem in the past. One is to attempt to get content providers
to present their information in a more structured format. In
that approach, the information is itself transmitted in XML
format from the server, together with formatting instruc-
tions, and the browser combines the structured information
and the formatting instructions into a human-readable doc-
ument. However, this is not very widespread yet because
only a fraction of the browsers in use have the ability to
perform the rendering. Furthermore, such an approach in-
volves considerable changes to their software systems on
the part of the content providers for no obvious benefit in
most cases.

An alternative approach to recovering the information is
the manual creation of “screen scraping” software. To cre-
ate such software, programmers examine the structure of
the HTML representing data on a particular web site and
hand-code instructions for extracting information from dif-
ferent parts of that structure. This requires both a significant
amount of manual work, as well as considerable program-
ming expertise.

To address this difficulty, considerable efforts have di-
rected at “wrapper induction”, the automatic generation of
procedures capable of extracting information from text (re-
viewed in [4]). Researchers in this area have come from the
inductive machine learning and information retrieval com-
munity. As a result, they have tended to formulate the wrap-
per induction problem as a learning problem (training data
for rule inference, followed by application data), and they

have focused on rules for information extraction based on
identifying delimiters of information or various forms of
automata that recognize information to be extracted (e.g.,
[6, 5, 2]).

While such systems have considerable generality and
power (e.g., they might be able to extract information from
plain text), they also have a number of limitations. For ex-
ample, many information extraction needs are casual and
ad hoc. That is, a user finds a number of web pages and
would like to compare and extract the information contained
in them in some convenient format. The user has neither the
time nor the expertise to train and validate a “wrapper”. Fur-
thermore, generating rule-based or automata-based wrap-
pers is a hard learning problem.

The approach to information extraction from web pages
taken in the work described in this paper is based on a
view of information extraction analogous to document lay-
out analysis in document images (e.g., OCR, handwritten
forms). That is, like screen scraping methods, we take ad-
vantage of the structural information (the document object
model, DOM, tree [7]) contained in web pages to locate rel-
evant information. However, unlike screen scraping meth-
ods, the procedure is automated and identifies interesting or
relevant information from a collection of web pages. Fur-
thermore, it does not require separate training, validation,
and application phases, but simply operates on a collection
of pages.

2 Information Extraction by Recursive
Structural Matching

The basic approach to structure-based information ex-
traction from web pages in this work can be described as a
hierarchical structural matching or tree differencing opera-
tion. That is, we represent each document by its document
tree. The associated decision problem is that of ordered tree
isomorphism.

The input to the algorithm is a collection of HTML doc-
uments represented by their trees. The subnodes of each
node in the document tree are represented as ordered se-
quences. The output from the algorithm is a table whose
rows represent “variables” and whose columns correspond

11



Figure 1. Illustration of structural differencing between HTML pages. Shown are two trees repre-
senting the HTML page structure. Nodes are brought into correspondence until differences are
detected.

to the different documents.
Each node in the tree representing an HTML document

has a type (e.g., paragraph, section, etc.) and possibly a
number of attributes. Each node is also associated with a
list of chunks of text interspersed with sub-nodes.

Starting at the root, we compare nodes in two or more
documents recursively. If the type, attributes, or number
of sub-nodes differs between corresponding nodes in the
document tree, they are considered a “difference”. Other-
wise, we compare the text chunks between sub-nodes in se-
quence. If any of them differ, again, the entire node is also
considered a “difference”. Each such difference gives rise
to a row in the output table. If two nodes are not different,
then corresponding sub-nodes are compared recursively us-
ing the same procedure. Sub-nodes that are determined to
be different in this procedure then give rise to separate rows
in the output table.

This simple, non-probabilistic procedure can already an-
alyze a wide variety of collections of web pages. Represen-
tative samples for a financial web site are shown in Figure 2.
For copyright reasons, the text was altered and images were
removed, but the structure of the pages is representative of
actual web pages on a live web site. Using the procedure de-
scribed above, the data in those web pages was transformed
into a spreadsheet; this is shown in Figure 3.

A convenient user interface for interaction with such an
HTML extraction engine is also shown by Figure 3. The
user can drag URLs into the window, and the system au-
tomatically and dynamically updates the extracted data. If
desired, the user can also view the source pages in different
tabs and select specific document tree components within
the HTML for extraction.

3 Extensions

The simple form of the method described above already
works for many kinds of web documents and transforms the
data contained in them into tabular form that is then easy
to reuse for other applications. However, there are a num-
ber of common variations among web pages that are ad-
dressed better if some modifications to the basic algorithm

are made.
Many web pages contain tables or lists of items, and

these may vary in length between different web pages. The
basic algorithm described above will return the entire table
or list as a single chunk that differs between the different
pages, as long as the number of rows differs. When, by
accident, the number of rows is the same in all the docu-
ments being compared, the algorithm will return each row
as a separate variable.

For tables, this can be addressed by detecting table or
list tags and treating them specially. But sometimes lists
are formed from repeating paragraphs and other elements.
This is a simple analog to the table detection problem in
document image analysis and can be solved by attempting
to perform tree isomorphism among all the subtrees of each
node; when it succeeds, we infer the presence of a repeated
structure, or “implicit table”.

Another source of variability among web pages is the
use of mark-up like bold face, italics, and sub- or super-
scripts. Those tags generally do not represent structural dif-
ferences between text documents, but rather should be sim-
ply considered part of the textual content. If they are used
as tags during the tree-based comparison, most of the time,
the results will still be correct, but occasionally, an acciden-
tal alignment between those tags may cause only part of a
semantically meaningful field to be returned. This can be
addressed by treating such tags as part of the text and not
considering them to be part of the page structure.

Spacing and the use of alternative glyphs or encodings
to represent the same character are other examples of vari-
abilities among different pages that can be eliminated prior
to comparison.

All these mechanisms can be considered as a canonical-
izing transformation of the DOM tree prior to comparison
(vaguely reminiscent of mechanisms in natural language
processing): by putting the DOM tree into canonical form,
both accidental agreements between different variables, and
accidental disagreements due to effects like spacing, are
eliminated for the analysis.

For web content generated using standard HTML report-
ing tools or scripting technologies and backed by databases,

12



Figure 2. Two sample pages from a financial web site. For copyright reasons, the text was altered
and images were removed, but the structure of the pages is representative of actual web pages on a
live web site.

the above procedures are generally sufficient. However,
there are some important areas where additional techniques
may be needed.

First of all, some web sites use images to represent tex-
tual content extensively. Whether structural HTML analy-
sis succeeds or fails in that case depends on whether images
span structural boundaries. For example, when images are
used to represent the content of individual cells of a table,
then the above method will still work. However, when en-
tire tables or paragraphs are represented as images, then the
method cannot extract structural information from them–
doing so would require image based document layout anal-
ysis.

Scripting and dynamic HTML do not necessarily repre-
sent problems for structural analysis methods as described
above. In particular, such techniques simply manipulate the
DOM tree; one approach to including them in a structural
analysis framework is to let the script run to completion to
yield the DOM tree that is used for display, and to use the
same DOM tree for analysis.

However, the use of layers and semantically meaningful
background images can present a problem, since layering
can create visual association between page elements that do
not correspond to any kind of structural proximity in the
HTML tree.

Some web sites may use such techniques deliberately to
take active measures for counteracting automatic analysis
of their content. Such measures may include deliberately
structure-spanning use of images, deliberate use of vari-
ability (e.g., the use of large numbers of different images
all representing spacing), or extensive use of layers. Ulti-
mately, the problem of structural analysis for those kinds
of web pages becomes the problem of breaking a reverse
Turing test or CAPTCHA (e.g., [1]); that is, the web site is
intended to be interpretable only to human readers, but not

machines.
Another important area is the analysis of human-

generated content. While machine generated content is
likely to be completely consistent, collections of human-
written web pages show idiosyncratic variation. That is, if
we apply structural analysis methods to them, we need to
allow for a certain degree of error. This can be addressed by
using approximate tree matching techniques.

4 Layout-Based Document Clustering

All of the techniques described above assume that the
web pages being analyzed are consistent and come from a
single source. For example, they might be a collection of
company information pages from a financial web site. How-
ever, in interactive use, users may collect pages haphazardly
for future analysis. It would be nice for the user interface to
automatically organize those pages into related sets.

In many cases, this is possible based on URL alone: re-
lated pages often share the same path, but differ in their
query variables. However, a significant number of web
sites use numerical object identifiers for dynamically gener-
ated content, making it impossible to infer the relationship
among many pages from the same site. To determine re-
latedness of pages, we need to analyze the content and its
relationship.

The tree-based comparison technique described above
provides us a convenient distance measure to determine how
similar web pages are. Comparison could use the tree edit
distance, but a simpler and more meaningful similarity mea-
sure is just the minimum of the fraction of each tree whose
nodes are matched by corresponding nodes in the other tree
(without taking into account the textual content).

This similarity measure can then be used in a standard

13



Figure 3. The figure shows data automatically extracted from the HTML documents shown above
inside a spreadsheet component. Furthermore, it illustrates a user interface that makes it easy to
extract data in tabular form from web pages: users simply drag-and-drop URLs onto the application.
The application obtains the corresponding HTML from the web site, analyzes the current set of web
pages to extract the variable information, and displays an updated spreadsheet containing the data.

clustering algorithm, and clusters of pages correspond to
groups of pages from which variables can be meaningfully
extracted by the above procedures. Of course, structural
document clustering of web pages may have other applica-
tions as well.

5 Discussion

This paper has described on-going work in applying
techniques and ideas from image-based document layout
analysis to the analysis of the structure of HTML docu-
ments. By making the structure of the document the pri-
mary focus of the analysis, rather than its textual content,
we obtain information extraction methods that are both sim-
ple to implement and appear to work on a large variety of
documents.

There has been some related work on comparing HTML
and XML documents. For example, [3] describesHtmlDiff,
a tool for detecting and highlighting changes in web pages.
More recently, [8] describeX-Diff, a change detection al-
gorithm that allows for unordered subtrees. However, the
application of differencing in this work differs in that it is
not used to detect changes over time, but to extract infor-
mation that varies among different web pages at the same
time.

The approach described in this paper also differs sub-
stantially from wrapper induction approaches described in
the literature [6, 5, 2]. Those approaches attempt to recover,
from training data, a representation of a regular expression
or grammar that is then capable of extracting desired in-
formation from novel pages. Computing and representing
wrappers is an algorithmically challenging task. In contrast,
the methods presented in this paper avoid computing any
kind of wrapper altogether, which results in a much simpler
algorithm.

Furthermore, wrapper induction methods have been de-
signed with a separation of model building and application
phases, and with the goal of extracting specific information
from web pages. In contrast, the approach escribed in this
paper is interactive: users collect web pages they are inter-
ested in, obtain variables contained in those web pages in
tabular form, and select the data they are interested in.

References

[1] A. Coates, H. Baird, and R. Fateman. Pessimal print: A re-
verse turing test,. In6th International Conference on Doc-
ument Analysis and Recognition, Seattle, WA, USA, pages
1154–1158, 2001.

[2] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: To-
wards automatic data extraction from large web sites. In27th
International Conference on Very Large Databases (VLDB
2001), 2001.

[3] F. Douglis and T. Ball. Tracking and viewing changes on the
web. InUSENIX Annual Technical Conference, pages 165–
176, 1996.

[4] L. Eikvil. Information extraction from world wide web - a
survey. Technical Report 945, Norweigan Computing Center,
1999.

[5] N. Kushmerick. Wrapper induction: Efficiency and expres-
siveness.Artificial Intelligence, 118(1-2):15–68, 2000.

[6] I. Muslea, S. Minton, and C. Knoblock. A hierarchical ap-
proach to wrapper induction. In O. Etzioni, J. P. Müller, and
J. M. Bradshaw, editors,Proceedings of the Third Interna-
tional Conference on Autonomous Agents (Agents’99), pages
190–197, Seattle, WA, USA, 1999. ACM Press.

[7] W3C DOM Technical Committee. Document object model
technical reports. http://www.w3.org/DOM/DOMTR,
2003.

[8] Y. Wang, D. DeWitt, and J. Y. Cai. X-diff: An
effective change detection algorithm for xml doc-
uments. To appear in ICDE 2003; available at
http://www.cs.wisc.edu/ yuanwang/xdiff.html.

14




