
Reflowable Document Images for the Web

Thomas M. Breuel1

PARC, Inc., Palo Alto, CA, USA

Abstract The paper describes on-going work on a system
that transforms page-oriented document images into “re-
flowable document images”, representations of the page im-
age in HTML format that allows it to adapt to display de-
vices of different sizes while preserving the original appear-
ance of the image as much as possible and avoiding OCR
errors. The approach to document layout analysis used by
the system is outlined and the strengths and limitations of
HTML for this application are discussed.

1 Introduction

Large numbers of documents are formatted for printing
on letter size or A4 paper. Those documents may be in
PostScript, PDF, or TIFF formats. Sometimes they are gen-
erated electronically, at other times, they are scanned.

A number of techniques for putting these documents on
the Web have been explored. Many of them are made avail-
able simply in their page oriented formats, as TIFF, PDF,
or PostScript files. When displayed on a normal desk-
top screen, however, fonts usually become much too small
when full pages are displayed, and users end up having
to scroll up and down to read multi-column documents.
TIFF, PDF, and PostScript are also not native web for-
mats and require plug-ins or helper applications to view,
which take some time to start up or may not be installed
at all. Additionally, PostScript files from untrusted sources
present a potential security risk. Many users prefer to sim-
ply print these documents for reading and then throw away
the printed copies afterwards.

When the source of the document is available (e.g., a
Microsoft Word or LaTeX file), there are special convert-
ers to turn these documents into HTML. For example, the
popular LaTeX2HTML converter generates a web of linked
HTML pages representing the source document. However,
given the limitations of HTML, the resulting conversions
are not entirely satisfying. First of all, LaTeX2HTML can-
not handle many kinds of macro definitions and other fea-
tures. In addition, most current web browsers cannot render
mathematics; therefore, LaTeX2HTML generates a mixture

1This paper describes joint work with Bill Janssen, Kris Popat, and
Henry Baird.

Figure 1. The layout analysis used in the gen-
eration of reflowable images. See the text for
details.

of running text with bit-mapped images interspersed, which
represent the mathematical formulas occurring in the source
text. This may sometimes work reasonably well, but since
web browser make no guarantees about the fonts or font
sizes used for rendering text, the font sizes and appearances
of the text may not match the size and appearance of the
mathematical formulas at all.

The Google web site (http://www.google.com/)
uses an interesting technique for rendering PDF documents:
the characters in the PDF document are identified, and they
are then placed at absolute locations within an HTML page,
using the style sheet features of HTML. This results in a
document that can be rendered in modern browsers and usu-
ally allows the reader to read most of the page content, but
it may result in text lines overlapping and missing mathe-
matical symbols. The appearance of the original text is not
preserved, and the rendition remains page oriented and of
fixed size.

None of these systems guarantee for a convenient and
natural reading experience. What we would like to have is a
way of turning arbitrary page-oriented documents back into
a structured form that permits reflowing (reflowing is the
adaptation of text to different window or page sizes).

One approach to this is to use an OCR (optical charac-
ter recognition) system. Commercial OCR systems actually
perform two major tasks. First, they recognize each individ-
ual character on the page, together with its font and other
attributes. Second, they analyze the logical structure of the
page (document layout analysis). They then combine the
results from those two analyses to attempt to obtain a struc-
tured source document (e.g., in HTML, SGML, LaTeX, Mi-
crosoft Word, or other formats) that, when processed, will
result in the same page-oriented document that the system
was originally given.

21



Figure 2. Different encodings that can be de-
rived from the scanned images and reflow an-
notations.

Unfortunately, OCR systems are far from being able to
achieve that goal in general. While they perform quite well
on purely textual documents with simple layouts, they fail
when pages contain many fonts, foreign languages, com-
plex layouts, mathematics, chemical formulas, or many
kinds of diagrams. In fact, the structured document format
into which they output the result of the OCR analysis may
not even be capable of representing all the features of the
source document.

In our work on reflowable document images, we are
taking an approach that falls in between attempting full
OCR and just displaying the original page-oriented rendi-
tion. Our system performs a limited form of document lay-
out analysis to decompose the document image into compo-
nents that can then be reflowed. Usually, these components
are word images and illustrations. This decomposition can
then be transformed into a number of formats (shown in
Figure 2) and viewed in a variety of different ways. Of par-
ticular interest are renditions in standard HTML format, be-
cause they can be viewed on almost any web browser.

Some aspects of the system, and a somewhat different
approach to the layout analysis problem, have been previ-
ously described in [2, 3]. This paper describes on-going
work and covers in more detail some of the experiences we
have had with the system, as well as problems specifically
with representing reflowable images using HTML.

The rest of the paper will briefly outline the current lay-
out analysis component of the system, and describe direct
viewing of reflowable image content. Then, it will present a
more detailed discussion about the use (and limitations) of
HTML as a format for displaying reflowable image content.

2 Layout Analysis

The details of the layout analysis method used in the sys-
tem are described in [1]. Let us briefly outline how it works
here.

Layout analysis begins with finding whitespace column

boundaries; [1] describes a method for identifying these us-
ing a simple branch-and-bound algorithm and an evalua-
tion function that is more robust than those used in previous
white-space analysis methods.

Once column boundaries (if any) have been identified,
the system identifies text lines. For that, a globally optimal
constrained text line finder is used; the algorithm finds text
lines that do not cross any of the identified column bound-
aries.

The output of these first two steps is a collection of text
line segments. Each text line segment represents a contin-
uous sequence of characters from the source documents in
reading order. However, the reading order among the text
line segments still needs to be determined. For that, the
system takes advantage of a partial order among text line
segments that can be determined easily and quite reliably
based on certain geometric arrangements of text line seg-
ments. This partial order is then extended into a total order
using a topological sorting algorithm.

The output of layout analysis is then a set of text line seg-
ments in reading order. When these are rendered in reading
order, one line at a time, they can be read and understood.
(In this process, certain “floats” components of the original
page image, such as figures and their captions, are put into a
reading order as well, although, by the nature of such floats,
they can be moved to some other locations without affecting
readability.)

Prior to any layout analysis, parts of the page that likely
represent tables, figures, or images need to be identified.
The current system relies on a classification based on size
and aspect ratio of connected components, but this clearly
can be improved. That step also identifies explicit column
separators, such as long, thin vertical lines between columns
that occur in some layouts.

To generate the reflowable document image, the individ-
ual text lines need to be subdivided further into “words”. It
is not absolutely critical that these subdivisions correspond
exactly to words; failure to break two words apart will just
lead to a slightly more ragged appearance of the reflowable
document, while breaking within a word leads is not visi-
ble unless, by chance, the reflowable image is displayed at
a width that makes breaking at that point convenient.

We refer to the collection of word bounding boxes, text
line segments, and reading order annotations as the “reflow
annotations” for the image. When the reflow annotations
are bundled with the original document image, the resulting
bundle contains all the information necessary for reflowing
the image for display in different window sizes and on dif-
ferent devices.

These bundles can actually be viewed directly using a
suitable custom viewer. Such a representation is nice be-
cause it requires no modification to the original document
image file. This may be important in some applications. It

22



Figure 3. Multiple renditions of the same
document in Mozilla on a desktop machine.
Mozilla can easily handle reflowing this con-
tent in real-time on this 1GHz PC running
Linux. Different text sizes are available.

also shows us that reflowable document images have a fairly
modest overhead compared with the original document im-
age, since the only additional information required is the
reflow annotations. These amount to a few kilobytes of data
per page.

Bundles can be converted into a variety of other formats
(Figure 2). The PDF format recently has been enhanced by
Adobe to permit the use of reflow information. A direct
conversion of bundles into reflowable PDF may be possi-
ble. Similarly, it may be possible to convert bundles into
structured vector graphics, together with JavaScript code to
handle the reflowing. However, since both of those tech-
nologies are not widely deployed yet, they will not be cov-
ered here.

3 HTML-Based Representations

HTML as an Intermediate Format HTML turns out to
be a fairly natural representation for reflowable document
images. A reflowed document image is shown at two sizes
in a desktop browser in Figure 3. And the same document
can be rendered easily on a PDA (Figure 4)

Reflowable document images represented as HTML con-
sist of a long sequence of image references. These usu-
ally alternate between references to word images and ref-
erences to a single image representing pixel-accurate inter-
word spacing.

Optional Spacing One problem that limits the fidelity of
reflowable document images represented as HTML is the
limited control that HTML gives over spacing. In particu-
lar, a high quality rendition requires the use of inter-word
spacing that disappears when the text line is broken at that

Figure 4. Display of reflowable images on a
Sharp Zaurus at 240 × 320 pixels.

position. If that space is retained at the end of a text line, it is
usually not very noticeable, but if it flows into the next line,
it appears as an indentation (this latter case can be avoided
by using the non-standardNOBR tag or equivalents).

While HTML does perform this kind of handling of
space for space characters, those characters are not of pre-
dictable width and cannot be used for the inter-word spacing
in reflowable document images.

Hyphenation Related to optional spacing is the issue of
optional hyphenation. In Western languages, documents
that have been rendered onto a page will contain hyphens
to indicate words that have been broken across lines. These
hyphenations are easy to detect even without full OCR, but
it is impossible to determine based on appearance alone
whether the hyphen is an essential part of the word (as
in “re-examine”) or whether it is only present because the
word has been broken across lines (some Western lan-
guages, however, use separate symbols for the two cases).
But even if it were possible to detect these cases, unlike
other type setting languages, it is not possible to indicate
optional hyphens in current versions of HTML. Fortunately,
these cases are rare and do not appear to affect readability.

Ultimately, both hyphenation and word breaks might be
identified by attempting OCR and outputting word breaks
and optional hyphens where the OCR reliably identified
words, with graceful degradation to the current appearance-
based mechanisms. However, until the facilities to actually
perform high-quality rendering of these subtle features in
HTML, there is little point to computing them, at least for
web-based display.

Network Performance One of the most serious limita-
tions of HTML based representations of reflowable docu-
ment images is the impact on network performance. The
running example used in this paper is composed of about
500 word images per page. These currently result in 500
separate requests from the web server. Features like HTTP

23



keep-alive connections, pipelining, compression, and par-
allel requests help make loading reflowable document im-
ages even over remote web connections feasible, but per-
formance improvements are desirable.

Ideal would be if a web page archive became standard
that allowed the HTML and all associated images to be
downloaded in a single transaction. Such a format actu-
ally already exists and is used, for example, in HTML-based
help systems and for web page archiving. However, it is not
(yet?) widely supported as an Internet file format.

Another approach to keeping the amount of data down
would be to download the original source image (e.g., in
PNG format), together with an HTML file that references
sub-rectangles of that image for rendering. This would re-
duce the number of transactions to two and require little
more overhead than the display of the original document
image.

In principle, a combination of style sheets and JavaScript
is capable of achieving this. However, the currently avail-
able implementations of dynamic HTML in major web
browsers (Microsoft Internet Explorer and Mozilla) do not
implement this feature consistently and reliably1.

Web sites increasingly use large numbers of small image
components, and this places a strain on web servers. There-
fore, it is likely that these issues will be addressed soon,
making HTML a fairly efficient and ubiquitous representa-
tion of reflowable document images.

Java and Flash Java and Flash are two systems that could
be programmed to interpret and render bundles of reflow
annotations and document images, getting around the limi-
tations of HTML for these purposes. Furthermore, Java and
Flash are widely available on desktop machines. However,
their integration with the web browser is still too limited to
be able to achieve a natural user experience. For example,
embedded Java or Flash applets do not easily resize along
with the containing page.

HTML Chunking and Proxying Some devices (e.g., the
Danger Hiptop phone, Figure 5) claim to be able to handle
general HTML, but their display engines are overtaxed by
pages containing large numbers of images.

A solution to both this problem and the problem of large
numbers of small HTTP transactions is to perform some of
the reflow computations on the server. This is feasible be-
cause screen sizes, in particular for handheld devices, gen-
erally only occur in a fixed number of widths. For example,
for the Danger Hiptop, we can precompute, on the server,
a set of reflowed document images for its specific display

1However, absolute positioning works well in current implementations,
so it is easy to present a reflowable document image represented as a large
collection of separate word images pixel-accurately in its original form by
positioning the individual words at their exact locations.

Figure 5. Display of reflowable images on the
Danger Hiptop, a cell phone with a screen res-
olution of 240 × 160.

width (240 pixels). Then, instead of sending individual
word images, we can send blocks of multiple text lines, re-
flowed to the device width, as images.

Alternatively, this kind of chunking can be performed
dynamically by a proxy server that transforms the bundles
(original page images together with reflow annotations) into
correctly sized image chunks on the fly.

4 Discussion

This paper has described on-going work in developing
systems for creating reflowable document images. These
are formats that are intermediate between structured text
and pure image-based formats. They retain the appearance
of the original text but can contain content that cannot be
captured reliably by OCR or even represented in non-image
formats for many browsers. The layout analysis techniques
developed as part of this work are also applicable to the cre-
ation of other electronic book formats (either image based
or OCR-based). But conversion to HTML in particular
promises to make scanned documents available universally
in a format that is non-proprietary, easy to implement, and
convenient for end users. As discussed above, HTML still
has some minor limitations for this application, but these
will likely get addressed as HTML and browser implemen-
tations mature further.

References

[1] T. M. Breuel. Two algorithms for geometric layout analysis.
In Proceedings of the Workshop on Document Analysis Sys-
tems, Princeton, NJ, USA, 2002.

[2] T. M. Breuel, W. C. Janssen, K. Popat, and H. S. Baird.
Paper-to-pda. InProceedings of the International Confer-
ence on Pattern Recognition (ICPR’02), Quebec City, Que-
bec, Canada, 2002.

[3] T. M. Breuel, W. C. Janssen, K. Popat, and H. S. Baird.Web
Document Analysis: Challenges and Opportunities, A. An-
tonacopoulos and Jianying Hu, editors, chapter Reflowable
Document Images. 2002.

24




