
STAN: Structural Analysis for Web Documents

Johannes Goller
FAST Search & Transfer

Am Rindermarkt 7, 80331 Munich, Germany
Johannes.Goller@fastsearch.com

Abstract

In this paper we present STAN, a structural analysis tool
used for classifying web documents while at the same time
extracting meaningful information from them. The extrac-
tion and classification rules are defined in terms of a struc-
trural grammaroperating on both layout properties and
content properties of the document. Stan was designed to
accept HTML as input and is able to process documents at
a speed of several MB/s (depending on the complexity of the
structural grammar used).

1 Introduction

Traditional search on collections of web documents, as
it is offered by major internet search engines, but also by
site-specific portals or company-specific enterprise search
engines, is generally based on keyword search, sometimes
enhanced by phrase search, proximity search, or specific
ranking boosts given to certain, easy to identify parts of the
documents (e.g. the title given in terms of the title tag).

However, often there is need for giving boost to parts of
the document that cannot be extracted in a trivial manner.
Examples include the automatic extraction of author names
from scientific web documents (when searching for papers
authored by a particular person), or the automatic recog-
nition of addresses (e.g. to enable search forgeographical
closeness of web documents in addition to purely text-based
similarity measures).

Depending on the degree of uniformity among the docu-
ments of the collection, it might in many cases be possible
to define the passages of the documents one wants to ex-
tract in terms of their HTML markup, or to manually mark
up those passages and have some wrapper algorithm learn
the extraction rules ([1, 5, 6, 2, 3, 4]).

With both approaches a question arises about how to rep-
resent the properties of the HTML markup surrounding the
relevant portions of the text, as well as how to represent
properties of the text itself. In some cases, the conditions

imposed on both markup and text can be stated very pre-
cisely (e.g. product descriptions from the web pages of a
specific company are likely to be marked-up all in precisely
the same unique manner, surrounded by a very specific se-
quence of HTML tags), whereas in other cases text and
layout properties are of a rather general nature (e.g. author
names from randomly chosen scientific web documents).

The approach taken in this study aims at being applica-
ble to a great variety of such extraction tasks, therefore it
attempts to offer a means of description of the target text as
flexible as possible. Furthermore, there is a natural exten-
sion of the basic information extraction feature, namely, the
capability to classify the whole document as belonging to a
certain type before carrying out the actual extraction of text;
in STAN, this extension has been closely integrated with the
general extraction principle.

In addition, STAN was designed to be part of large-scale
internet search engines, hence extremely high processing
speed was another indispensable goal. Finally, the tool was
envisaged to be at some time able to automatically learn
extraction rules, therefore we aimed at designing it in a way
that wouldn’t hamper such an extension.

2 General methodology

When processing an HTML document, STAN performs
the following main steps:

Step 1 Parse the HTML and generate a representation of
the text nodes of the document tree reflecting their
layout and textual properties, as well as a represen-
tation of their relative positions;

Step 2 Apply a number of BLOCKTYPE rules to text
nodes belonging together which operate on the text
nodes’ features and assign one or several text block
types to each of them;

Step 3 Apply a number of COMPLEX BLOCKTYPE rules
to the – now typed – text blocks, combining some of
the text blocks to complex objects;

15

Step 4 Apply DOCTYPE classification rules to the network
of typed (partly complex) text blocks and assign one
or several types to the entire document;

Step 5 Print out of blocks that were assigned relevant types.

In the following, we give a brief description of each of
these steps.

2.1 HTML Parsing

The HTML parsing algorithm used for STAN first goes
through the document in one pass and generates a repre-
sentation of each text node (i.e. each piece of text between
two HTML tags) along with its layout features defined by
the enclosing HTML tags; in addition, it looks up words
and phrases in a finite state automaton of typed words and
phrases. The words in the lexicon and the types associated
with them have to be provided to STAN in advance. The
purpose of the lexicon lookup is to obtain a notion of the
textual properties of each text node by counting words of
certain types. E.g. for an application that aims at extracting
addresses, one would define a lexicon of street names, city
names, zip codes etc. and have STAN count these types.

After the parser finished, each text noden is represented
as a tuple(Sn, Fn, Ln) where

Sn = (sn
c , sn

w, sn
s)

representssize properties of the node (number of characters,
words, and sentences respectively),

Fn ⊆ {anch, high0, high1, high2, high3, title, meta, url, ext}
representsformat properties, and

Ln = (ln1 , . . . , lnm)

representslexical properties by indicating the count for each
word type defined in the lexicon (we assumem word types).
The format properties are given as a set offormat speci-
fiers, each referring to a certain layout feature text nodes
may have: they can be anchor texts (anch), highlighted to
a certain degree (high0, . . . , high3), they can be the title of
the document (title), meta keywords (meta), the URL of the
document (url, it’s treated like a text node), or external ref-
erence (ext, e.g. external anchor text pointing to the docu-
ment). The highlighting degree is computed based on an
evaluation of font size, color (compared to the predominant
color of the document), and boldness, which in turn are cal-
culated from an interpretation of the enclosing HTML tags.

In addition to representing each single node, also the rel-
ative positions of the text nodes are computed, as well as a
rough approximation to the distance between adjacent text
nodes. To this end, all HTML tags that have a separating ef-
fect (such as
, <p>, etc.) were assigned a score

ranging1 − 4, indicating line break (1), paragraph break
(2 or 2 × 1), visual separator (3, e.g.<hr>), conceptual
separation (4, e.g. when one text block is part of the head,
while the other is part of the body). During parsing, point-
ers are placed inside the text nodes, tying together those that
are next to each other, along with an indication of in what
sense they are adjacent (left-right vs. up-down) and what
the distance is (if there is more than one separator tag in be-
tween, the maximum distance score among them is used).
Note that the only way left-right associations can occur is
through table structures – which are widely used and often
nested and very complex.

Of course, determining the exact adjacency relation of
the text nodes, i.e. finding out which text nodes are side by
side with which other text nodes, is not possible unless one
(i) knows the size of the pictures in the document, and (ii)
assumes a window and font size and some other rendering
parameters a browser might use. Both these factors are not
taken into account: wherever the adjacency relation among
text nodes in a table cannot be determined precisely,all text
nodes that could potentially be neighbours of each other are
assumed to be adjacent (which is the case e.g. in a table field
that has a neighbour field split in two parts).

2.2 BLOCKTYPE rules

A text block is defined as the collection of all text nodes
located on one line and not separated by visual vertical
separators (as in many tables). Based on this definition,
STAN transforms the network of text nodes into a network
of text blocks by re-establishing the adjacency relation as
induced by the adjacency relation among the text nodes
and by computing for each text blockb a representing tu-
ple(Sb, F b, Lb) according to the following rules; (b itself is
formalized as the set of the nodes belonging to it.)

• Setsb
c =

∑
n∈b sn

c , and correspondingly forsb
w, sb

s;

• Set Fn =
⋃

n∈b Fn, but remove all highi elements
from the set, replacing them by only one new high-
lighting element, re-computed according to the aver-
age font size, color etc. score inb;

• Lb =
∑

n∈b Ln.

After that STAN attempts to assign types to each of the
text blocks. The available types have to be defined by the
user in advance in terms of BLOCKTYPE rules given in
a configuration file. A BLOCKTYPE rule specifies a type
(i.e. a semantic descriptor such as “author section”, “street
line of an address” etc.) and defines the conditions a text
block has to meet in order to be assigned that type. The con-
ditions operate on the representing tuple of the text block
and are given in terms of a list ofmodel tuples one of which
a text block has tomatch in order to be assigned that type. A

16

model tuple is basically a triple of conditions(CS , CF , CL),
one for each of the elements of the representing tuples. In-
stead of a lengthy precise definition, we only give one ex-
ample here, which hopefully conveys sufficient information
to understand how these rules work:

LEXTYPE lxStreet
(wtStreet,1-3),
(wtNumber,>=1)

BLOCKTYPE Street
((words<7),(0-2),lxStreet)

That is,CS is (words<7), indicating a restriction of
the maximum number of words,CF is (0-2), meaning
that the highlighting of the line should be high0, high1, or
high2, CL is a reference to a definition given separately of
the conditions imposed on the vectorLb. Note that we as-
sume two word types here,wtStreet andwtNumber,
the former referring to words that were identified to be street
names (by virtue of a lexicon), the latter referring to strings
that were recognized as numbers. As a whole, this BLOCK-
TYPE type is supposed to identify text blocks that are likely
to be that part of an address that specifies the street (and
house number) – it was one of several alternative rules for
such lines used for extracting addresses. More complex
combinations of the features accessible in(Sb, F b, Lb) can
be defined in the same fashion.

2.3 COMPLEX BLOCKTYPE rules

COMPLEX BLOCKTYPE rules are also specified in the
configuration and enable STAN to merge certain combina-
tions of typed text blocks into bigger blocks, also assigning
a type to them. There is a variety of alternatives for how
complex blocks can be defined: as pairs of adjacent blocks,
as lists of blocks of a certain type, or with a minimum den-
sity of blocks of a certain type, or as sequences of partic-
ular block types. For instance, an address can be specified
as a sequenceowner block, street block, city
block, provided that these types were defined in BLOCK-
TYPE rules. Of course, alternative sequences can be de-
fined and wildcard block types can be used in the sequence
in case not all parts of an address can be recognized. Note
that, as yet, the complex rules focus on vertical, sequence-
like block combinations. Horizontal structures cannot be
defined very accurately at this time, but obviously, such ex-
tensions are possible.

2.4 DOCTYPE rules

In a way similar to COMPLEX BLOCKTYPE rules a
type can be found for the entire document, if the order or

density of certain textblock types meets restrictions speci-
fied in the configuration. See below for a simplified exam-
ple of such a rule; it has been taken from an application for
the automatic detection of scientist homepages:

DOCTYPE ScHomepage
30,
(NameTitle,10),
(HpHeading,10),
(HpHeading,200),
{BiogrTxt,1}

This (being one of several alternative rules) describes a sci-
entist homepage as consisting of (1) a title section with a
proper name (recognized by a BLOCKTYPE rule using ap-
propriate lexica of first and last names), (2) a characteristic
heading≤ 10 blocks after the title (e.g. “Research Inter-
ests”, recognized by a corresponding BLOCKTYPE rule,
based on a lexicon of typical phrases), (3) another such
heading,≤ 10 blocks after the first one. (4) It requires there
to be≤ 30 blocks (of any type) before the title, and≤ 200
blocks after the second typical heading. The expression in
curly brackets refers to a minimum-occurrence condition,
requiring the document to have≥ 1 biographical text block
somewhere (no matter what its position). A biographical
text block can be thought of as a rather big paragraph con-
taining typical phrases, e.g. “I was born”, “I studied”, etc.).

Of course alternative rules for the same document type
have to be specified to increase recall.

3 Tests and results

STAN has been applied to a number of classification
and extraction tasks, undertaken for real-life search en-
gines. Among them are (i) extraction of German postal ad-
dresses, (ii) extraction of bibliographic sections of articles,
(iii) recognition of scientist homepages. Precision achieved
for theses tasks was around 90%, 95%, and 80% respec-
tively, measured only in a rough manner by checking about
150 randomly chosen extraction outputs. For (iii), a more
thorough analysis was performed, measuring both preci-
sion and recall on a set of 2,000 documents (among them
360 homepages of scientists). Precision was 82.16%, recall
80.28%. For (i) 48 text block and complex text block rules
were used, in (ii) there were about 50 rules1, in (iii) 45 rules.

As for speed, the number and complexity of the rules
has a major impact on the performance of the program. In
the examples given above, a speed of about 1-1.5 MB/s of
processed input was achieved.

Lexica used for these test cases encompass big proper
noun lexica (∼1M surnames) and lists of street and city

1This can only be estimated since it was tested with an earlier version
of the program with the rules slightly different and hardwired into the code.

17

names (∼110K), as well as hand-crafted lists of phrases typ-
ical for certain document types.

4 Machine learning extensions

In order to facilitate the generation of rules while at the
same time improving accuracy, the capability to automati-
cally learn rules from sample documents would clearly be a
useful improvement. Only a few steps have been taken to-
wards that goal, and a detailed description cannot be given
here. To us it seems quite straightforward to apply differ-
ent learning strategies to the various types of rules present
in the system: For learning vocabulary lists (for the LEX-
TYPES), n-gram based terminology extraction algorithms
are promising; for learning adequate restrictions onS and
F , a good strategy could be to transform the bunch of size
numbers inS into an element of a finite set of predefined
values – such as “small”, “middle-sized”, “big” –, based on
a simple a-priori heuristics, and use them as unary predi-
cates for the text nodes. As forF , since the set of its poten-
tial elements is finite anyway, predicates could be defined
for them as well (lett be a text node, some predicatepe(t)
is true iff e ∈ F t). Then constraints onS andF could be
represented in terms of a decision tree, to be learned by a
0-order inductive learning algorithm.L however, being a
classical document vector, would best be learned based on
a vector space approach. Eventually, optimal combinations
of the restrictions found forS, F andL, to be used as the
final BLOCKTYPE rule, could be derived by virtue of a
detector fusion principle.

For complex block types much depends on the degree
of complexity one would like to achieve – but for lists and
pairs, ad-hoc combinations of existing learning methodolo-
gies similar to those mentioned above are certainly quite
suitable. The bigger problem will probably emerge from
the fact that for tasks such as document type identification,
though it might be easy to define a set of positive samples,
it’s likely to be a very hard task to find adequate negative
samples – having a structure similar to but slightly differ-
ent from that of the positives. We plan to design a user-
interactive procedure, through which the rules would be
learned in several iterative steps, after each of which the
user would have to evaluate a number of positively classi-
fied documents from a big training corpus, thus pointing the
learner to near misses.

5 Conclusion and future perspective

STAN as a program that provides structure-based classi-
fication and extraction, has proven to be capable of solving
a variety of different problems in the area. Grammar-like
rules are maintained, operating on various levels of “granu-
larity”, i.e. nodes, blocks, and complex structures. It is easy

to include huge lexica of relevant words and phrases, and
the grammar is defined in the form of structural rules which
are simple enough for being likely to be automatically learn-
able, though some difficulties might emerge when it comes
to selecting proper sample documents.

The main idea behind STAN is of course to provide a
means of transforming a document into an abstract repre-
sentation of its predominant, meaningful parts and to give
a notion of what their meaning is (in terms of a type asso-
ciated with them). However, since the system operates in
close connection with an HTML parser, more precise spec-
ifications of the extraction task in terms of exact sequences
of HTML tags can potentially be tied in with the current
system without having to make substantial modifications to
the overall design.

To sum up, basic goals set in the beginning were
achieved without precluding the opportunity to further de-
velop it with respect to machine learning and improvement
of rule definition and matching functionality.

The program has been successfully integrated in several
search engines, nonetheless being subject to constant devel-
opment in the directions outlined above. Clearly, the STAN
approach is only sensible when the class of target docu-
ment types is fairly limited so that the task of specifying
the grammar rules is still feasible. E.g. while the detection
of scientist homepages was possible, the more general class
of all (private) homepages might be considerably more dif-
ficult to describe in terms of STAN rules. Most probably,
one would need to describe various subtypes, each of them
giving rise to a large number of text block types and fur-
ther rules. Hence, implementing some learning capability
is among the most urgent next steps in the work to come.

References

[1] B. Adelberg. NoDoSE–a tool for semi-automatically extract-
ing structured and semistructured data from text documents.
In Proceedings of SIGMOD-98, pages 283–294, 1998.

[2] N. Ashish and C. Knoblock. Wrapper generation for semi-
structured internet sources. InProc. Workshop on Manage-
ment of Semistructured Data, Tucson, 1997.

[3] M. E. Califf and R. J. Mooney. Relational learning of pattern-
match rules for information extraction. InWorking Notes of
AAAI Spring Symposium on Applying Machine Learning to
Discourse Processing, pages 6–11, Menlo Park, CA, 1998.
AAAI Press.

[4] D. Freitag. Information extraction from HTML: Application
of a general machine learning approach. InAAAI/IAAI, pages
517–523, 1998.

[5] N. Kushmerick. Wrapper induction for information extrac-
tion. Ph.D. Dissertation, 1997.

[6] I. Muslea, S. Minton, and C. Knoblock. Wrapper induction
for semistructured web-based information sources. InThird
International Conference on Automatic Learning and Discov-
ery CONALD-98, Pittsburgh, June 1998.

18

